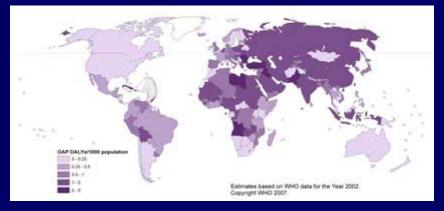
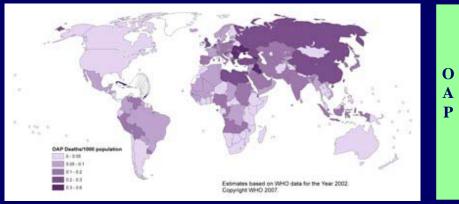
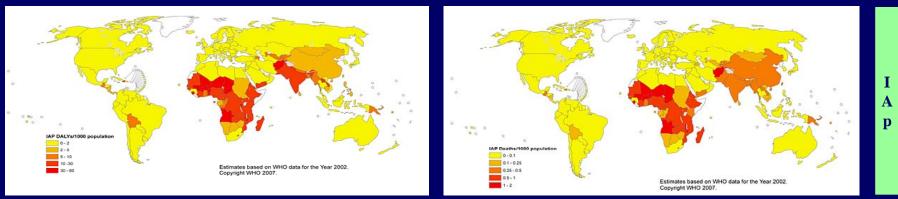

Exposure Assessment Challenges in Air Pollution Related Health Assessments A perspective from studies in India

Dr. Kalpana Balakrishnan Professor & Head Department of Environmental Health Engineering Sri Ramachandra University Chennai






Т

E

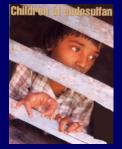
Р

From "Environmental burden of disease, WHO 2007"

Competing risk factors

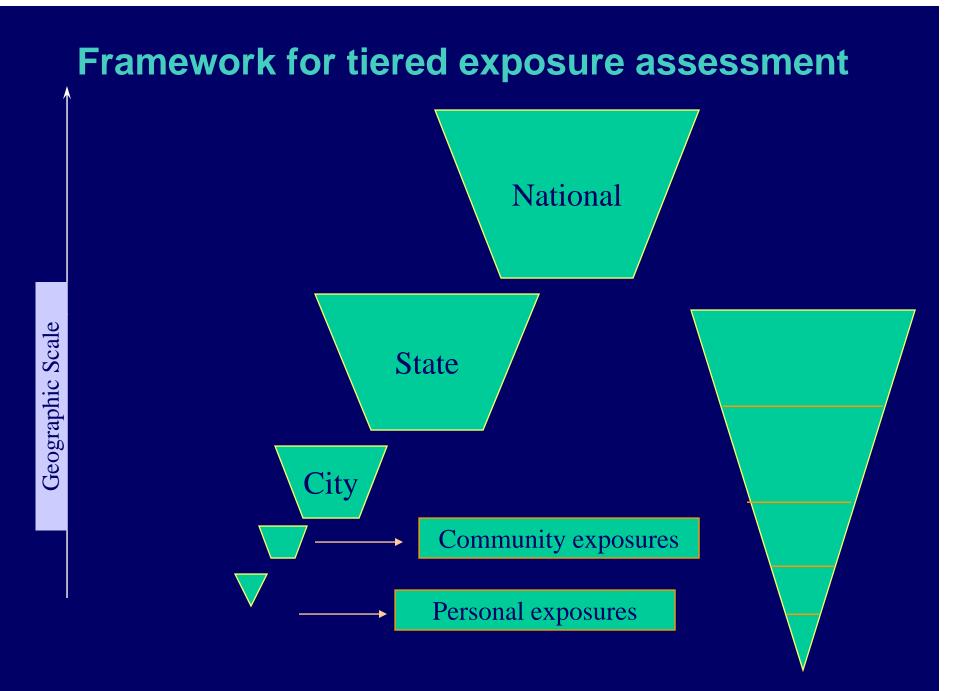
	DALYs (in 1000s)			
Environmental risks	World	India		
Unsafe water, sanitation and hygiene	54,158	18,487		
Urban air pollution	7,865	1,513		
Indoor smoke from solid fuels	38,539	14,237		
Lead exposure	12,926	2,687		
Climate change	5,517	2,538		
Occupational risks				
Risk factors for injury	13,125	3,775		
Carcinogens	1,421	177		
Airborne particulates	3,038	370		
Ergonomic stressors	818	189		
Noise	4,151	1,152		

Competing micro-environments (Indoor/Outdoor/Occupational)



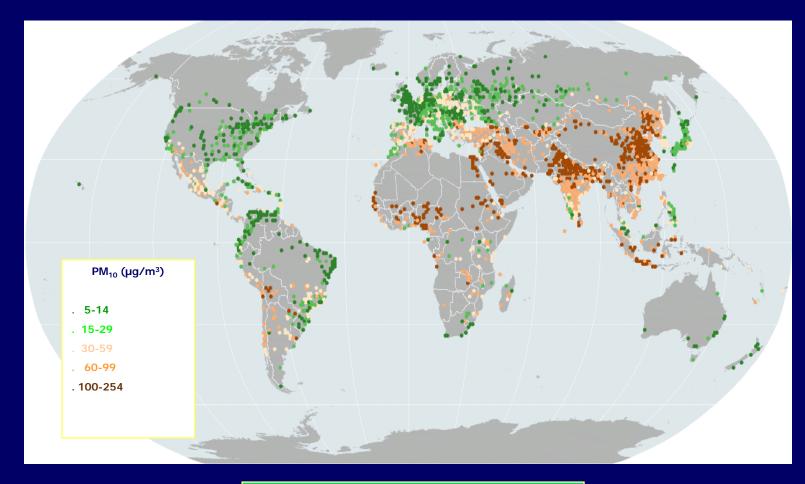
Past status of air pollution related exposure information

Outdoor

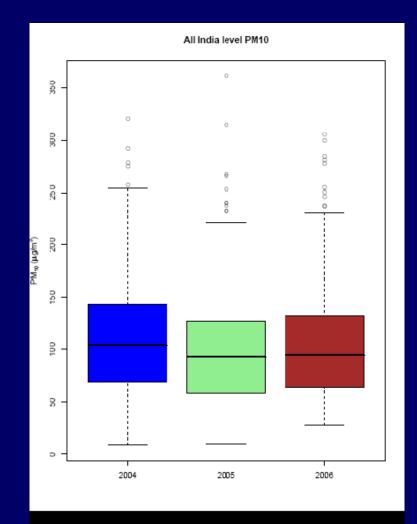

- Few cities with few monitors operated on few days monitoring few pollutants in urban outdoor settings
- Limited time and space resolved information
- Limited modeling attempts

Indoor

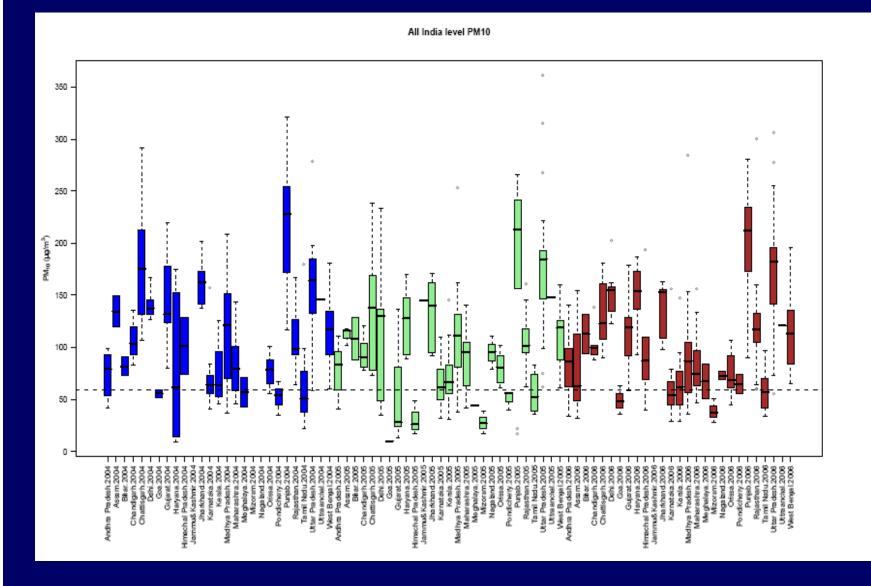
- No routine monitoring information on indoor air pollution related to solid fuel use
- Extensive range of exposure determinants


Occupational

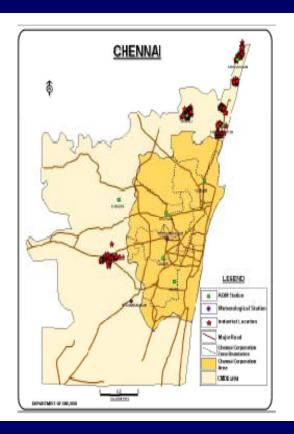
- Limited datasets on occupational hygiene
- No routine data on non-industrial and industrial SMEs not covered by regulation

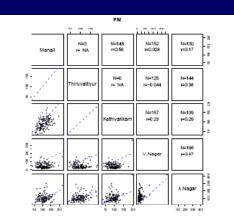

Outdoor Air Pollution

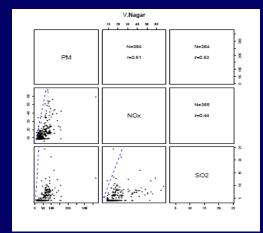
Estimated PM10 Concentration in World Cities (pop >=100,000)


Cohen et al., WHO CRA Report 2002

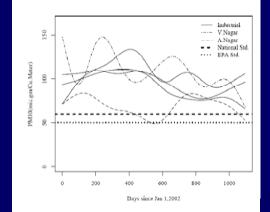
Urban Outdoor Air Pollution


341 stations across 126 cities in 25 states and 4 UTs78 non-attainment cities,24 critically polluted areas

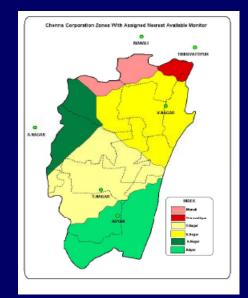

Urban Outdoor Air Pollution

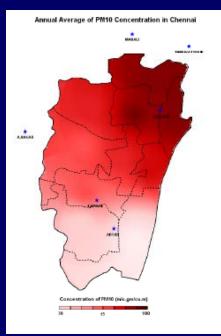


Challenges for time-series analysis


- Most cities have multiple monitors but regulation requires only 108 days /year for routine air quality monitoring.
- Many monitors do not follow a regular monitoring schedule
- Direct readout instruments seldom used in the routine network (Short-term averages are usually not available)
- Measurement error issues (such as related to wet chemical methods for gases, cyclone selection for PM measurements)
- Small monitor footprints (few meet the criteria of a true background monitor)
- No monitoring on weekends (limiting examination of lag effects in models)
- Mixed land use patterns –i.e. classification as industrial, commercial and residential areas often not based on source profiles or emission inventories
- Limited data available in electronic format

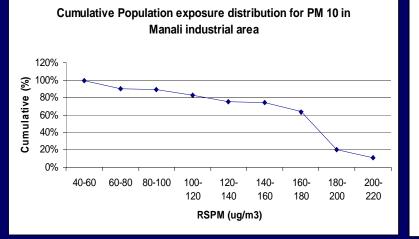

Chennai air quality monitoring data (2002-2004) (single pollutant (PM) across multiple monitors/ multiple pollutants at a single monitor/ smoothed time-series data for PM across monitors)

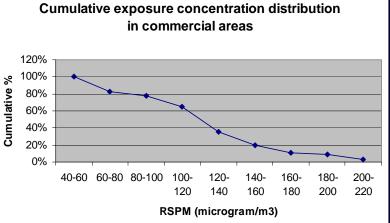


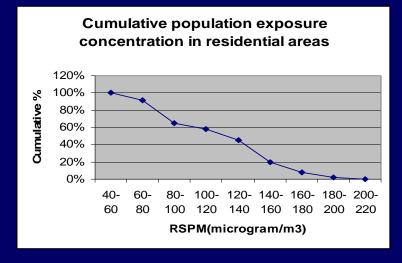

% missing-ness across air quality monitors in Chennai (2002-2004)

Day of week	Manali (Ind)	Thiruvot (Ind)	Kathivak (Ind)	T.Nagar (Com)	V.Nagar (Com)	A.Nagar (Res)	Adyar (Res)
Sunday	100	100	100	99	98	99	98
Monday	17	100	100	50	58	49	49
Tuesday	92	100	4	51	52	53	52
Wednesday	100	7	100	57	54	48	54
Thursday	12	100	8	47	58	58	58
Friday	100	10	100	62	53	54	61
Saturday	100	100	100	99	97	98	99

Zonal model for air pollution exposure in Chennai



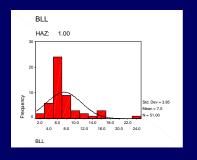


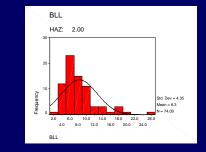

Sensitivity analysis for effects estimates from alternative exposure series for PM 10 in Chennai

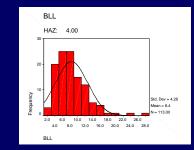
Model	N	$Estimate(\beta)$	RR for $10\mu g/m^3$	Est.of over	Dev.Expl.
		(S.E.)	increase of PM(95% CI)	dispersion	(%)
Zonal model(core)	742	0.00044(0.00014)	1.0044(1.002,1.007)	1.25	50
Single monitor					
A.Nagar	375	0.00033(0.00022)	1.003(0.999,1.008)	1.54	48.7
V.Nagar	358	0.00043(0.00016)	1.004(1.001,1.008)	1.40	49.5
Ind Avg	712	0.00030(0.00021)	1.003(0.999,1.007)	1.58	43.8
Multiple monitor					
Without Ind.	512	0.00039(0.00011)	1.004(1.002,1.008)	1.49	45
With Ind.	731	0.00030(0.00010)	1.003(1.001,1.005)	1.68	45.1
Impuled	731	0.00040(0.00010)	1.004(1.002,1.006)	1.62	44.5

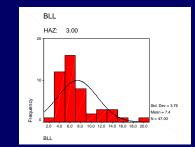
Personal exposure measurements in Chennai

Commuting and /or staying close to high traffic areas contributed the most to population exposures in Chennai, with population in slums using solid fuels and children in schools using solid fuels experiencing the greatest peak exposures

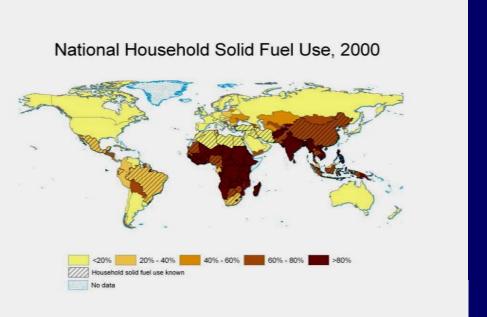

Cohort Study/ Characteristics	Pollutant	Number of Subjects	Follow up Period	Geographic Coverage	Hazard Ratio (95% Confidence Interval)
American Cancer Society (ACS) - National	PM _{2.5}	486,133	1982-2004	United States (116 MSAs)	1.08 (1.04, 1.12)
Medicare (National)	PM _{2.5}	13,200,000	2000-2005	United States (668 Counties)	1.06 (1.04, 1.07)
Veterans	PM _{2.5}	70,000	1997-2001	United States (774 Counties)	1.06 (0.93, 1.22)
Netherlands Study on Diet and Cancer (NLCS)	PM _{2.5} (converted from PM ₁₀)	120, 852	1987-1996	Netherlands	1.06 (0.97, 1.16)
Six Cities (SCS)	PM _{2.5}	8,111	1979-1998	Northeast and Midwest US (6 Counties)	1.16 (1.07, 1.26)
Medicare (SCS)	PM _{2.5}	341,099	2000-2002	Northeast and Midwest US (6 Counties)	1.21 (1.15, 1.27)
American Cancer Society - Regional	PM _{2.5}	301,045	1982-2004	Northeast and Midwest US (68 MSAs)	1.13 (1.07, 1.18)
Nurses Health Study (NHS)	PM ₁₀	66,250	1992-2002	Northeast and Midwest US (11 States)	1.15 (1.04, 1.28)
Medicare (Regional)	PM _{2.5}	Not Reported	2000-2005	Eastern US (421 Counties)	1.11 (1.08, 1.13)
Medicare (Regional)	PM _{2.5}	Not Reported	2000-2005	Central US (185 Counties)	1.09 (1.05, 1.13)
American Cancer Society - Regional	PM _{2.5}	182,284	1982-2004	Southern and Western US (48 MSAs)	1.04 (1.00, 1.08)
Medicare (Regional)	PM _{2.5}	Not Reported	2000-2005	Western US (62 Counties)	1.00 (0.98, 1.02)
Adventist Health Study of Smog (AHSMOG)	PM ₁₀	6, 338	1977-1992	California	1.00 (0.96, 1.04)

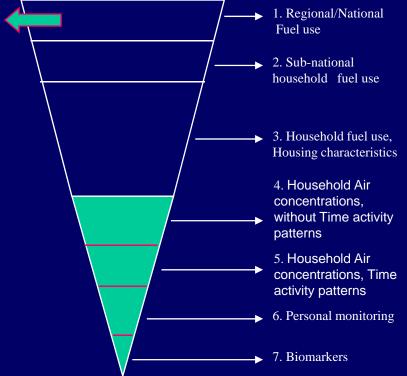

Cause of Death /Cohort	ACS (National)	ACS (South& West)	ACS (East& Midwest)	SCS	WHI (BetweenCities)	NL	Nurses (PM ₁₀)	AHSMOG (PM ₁₀)
Cardio- vascular	1.17 (1.11, 1.24)	1.11 (1.05, 1.17)	1.21 (1.11, 1.31)	1.28 (1.13, 1.44)	1.63 (1.10, 2.40)	1.11 (0.93, 1.33)		
Ischemic /Coronary Heart Disease	1.29 (1.18, 1.41)	1.23 (1.12, 1.34)	1.23 (1.08, 1.39)	1.26 (1.08, 1.47)	1.67 (0.98, 2.85)	0.96 (0.75, 1.22)	1.43 (1.09, 1.88)	
Cerebro- vascular	1.14 (1.02, 1.26)	1.14 (1.01, 1.29)	1.11 (0.94, 1.32)	0.96 (0.70, 1.31)	1.58 (0.90, 2.78)	1.62 (1.07, 2.44)		
CV- IHD-CER*	0.99 (0.88, 1.13)	0.86 (0.71, 1.04)	1.25 (1.04, 1.51)					
Respiratory	1.02 (0.93, 1.13)	1.06 (0.95, 1.18)	1.07 (0.92, 1.24)	1.08 (0.79, 1.49)		1.07 (0.87, 1.52)		1.06 (0.99, 1.14)
Lung Cancer	1.14 (1.06, 1.23)	1.10 (0.98, 1.21)	1.17 (1.03, 1.33)	1.27 (0.96, 1.69)		1.06 (0.82, 1.38)		1.38 (1.10, 1.73)
Others**	0.98 (0.94, 1.03)	0.93 (0.88, 0.99)	1.03 (0.98, 1.09)	1.02 (0.90, 1.17)		1.08 (0.96, 1.23)		


Requirements for additional exposure data


- Simultaneous data on multiple pollutants
- Greater spatial and temporal resolution
- Land-use regression models
- GIS and satellite data interfaces for spatial interpolation
- Larger databases on personal exposures

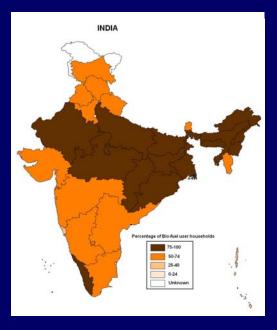
Children's blood lead levels across zones in Chennai

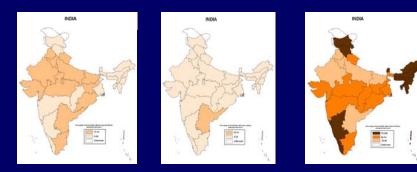




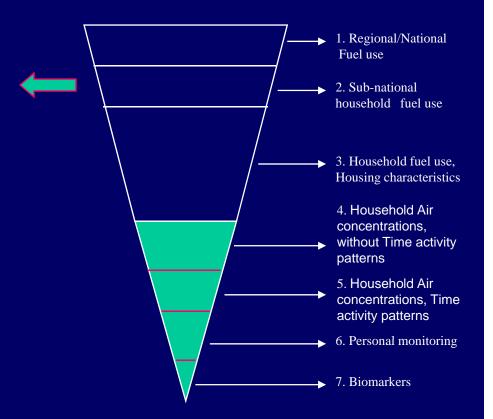
Zones	Blood lead levels			
	<10	µg/dL	≥10 µg/dL	
	Ν	%	Ν	%
Industrial	175	50.87	250	57.67
Commercial	64	18.6	98	23.78
Residential	105	30.52	64	15.53

Indoor Air Pollution

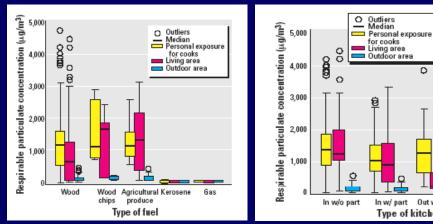


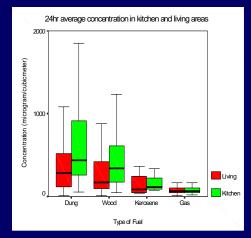

Indoor air pollution, biomass fuel use and national burden of disease

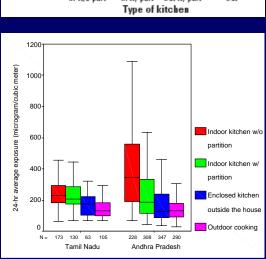
- ARI : 290,000- 440,000 premature deaths in children under 5
- COLD : 19,000-34,000 cases in women under 45
- Lung Cancer : 400-800 cases in women under 45


Indoor Air Pollution

Prevalence of fuel use




Prevalence of kitchen types



Recent large-scale IAP measurement studies

Tamil Nadu(412)	PM (G)		
Andhra Pradesh (436)	PM (G)		1. Regional/National Fuel use
Tamil Nadu, West Bengal, Uttaranchal, Madhya Pradesh (600)	PM (G) PM (UCB) CO		2. Sub-national household fuel use3. Household fuel use, Housing
Haryana (150)	PM (G)		characteristics 4. Household Air concentrations,
Karnataka, Tamil Nadu (68) Improved stoves	PM (G) PM (UCB) CO		without Time activity patterns5. Household Air concentrations, Time activity patterns6. Personal monitoring
Maharashtra (Pune, Urban, 61)	PM (G) CO	▼ →	7. Biomarkers
Delhi (40, Urban)	PM		

Q

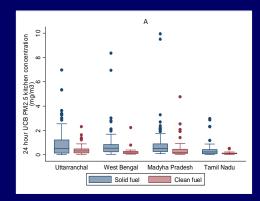
In w/ part Out w/ part

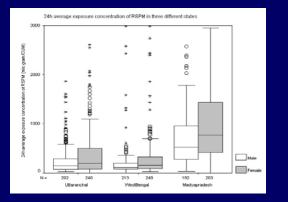
B T

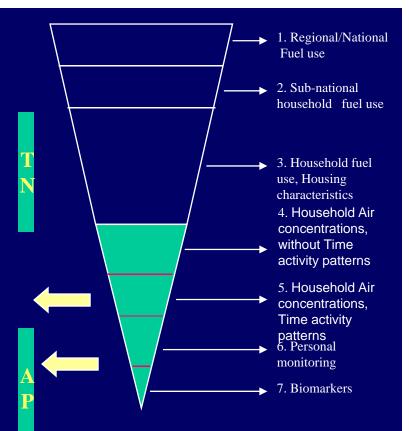
U

Р

Μ


Ρ


B


Out

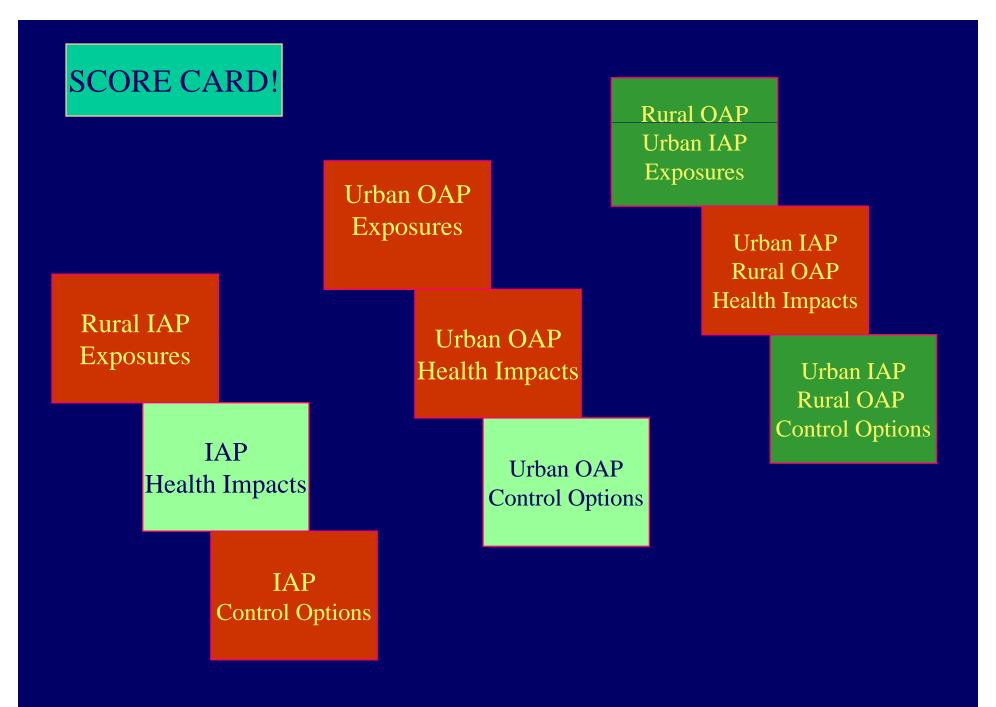
D

Ð

IAP relevant issues

- Exposure implications for rural outdoors
- Exposure transitions accompanying interventions
- Differential effect modification according to exposure status
- Increasing exposure potentials for urban air toxics

Combined Outdoor/Indoor/Occupational Exposures (an example from the stone quarrying/crushing sector)


۲

- Limited information on dust exposures, very sparse information on silica exposures
- Women not considered as workers
- Children are seldom reported as workers
- Many occupational exposures remain uncharacterized
- Smoking among women is greatly under-reported
- Efficiency of dust control
 seldom bench-marked
 against commonly used
 standards

- Silica content varies across geographical regions
- Women's exposures to PM exceeded men
- Men's exposures in stone quarrying sector was high but lung function not significantly different from agricultural workers in the same belt (after adjustment for smoking)
- Most dust control devices achieve a 50-60% reduction from a starting level of >er than 10mg/m³

Thank you!